ANÁLISIS - EJERCICIOS DE SELECTIVIDAD ANDALUCÍA 2019-

Ejercicio 1: (2019)

Ejercicio 1.- Según un determinado modelo, la concentración en sangre de cierto medicamento viene dada por la función $C(t) = te^{-t/2}$ mg/ml, siendo t el tiempo en horas transcurridas desde que se le administra el medicamento al enfermo.

- (a) [2 puntos] Determina, si existe, el valor máximo absoluto de la función y en qué momento se alcanza.
- (b) [0,5 puntos] Sabiendo que la máxima concentración sin peligro para el paciente es 1 mg/ml, señala si en algún momento del tratamiento hay riesgo para el paciente.

Ejercicio 2: (2019)

Ejercicio 2.- [2,5 puntos] Dado un número real a > 0, considera la función $f : \mathbb{R} \to \mathbb{R}$, dada por $f(x) = x^2 - ax$, y la recta y = 2ax. Determina a sabiendo que el área del recinto limitado por la gráfica de f y la recta anterior es 36.

Ejercicio 3: (2019)

Ejercicio 1.- [2,5 puntos] Dada $f\colon (1,e) \to \mathbb{R}$ la función definida por $f(x) = \frac{1}{x} + \ln(x)$ (In denota la función

logaritmo neperiano), determina la recta tangente a la gráfica de f que tiene pendiente máxima.

Ejercicio 4: (2019)

Ejercicio 2.- Sea $f \colon \left[0, \frac{\pi}{6}\right] \to \mathbb{R}$ una función continua y sea F la primitiva de f que cumple

$$F(0) = \frac{\pi}{3} \text{ y } F\left(\frac{\pi}{6}\right) = \pi.$$
 Calcula:

(a) [1 punto]
$$\int_0^{\frac{\pi}{6}} \left(3f(x) - \cos(x)\right) dx$$

(b) [1,5 puntos]
$$\int_0^{\frac{\pi}{6}} \sin \left(F(x)\right) f(x) \, dx$$

Ejercicio 5: (2019)

Ejercicio 1.- [2,5 puntos] Dada la función $f:(0,2\pi)\to\mathbb{R}$, definida por $f(x)=\sin(x)+\cos(x)$, calcula sus máximos y mínimos relativos y los puntos de inflexión de la gráfica de f (abscisas en los que se obtienen y valores que se alcanzan).

Ejercicio 6: (2019)

Ejercicio 2.- Sea $f \colon \mathbb{R} \to \mathbb{R}$ la función dada por

$$f(x) = \begin{cases} -x^2 + 6x - 8 & \text{si} & x \le 4 \\ x^2 - 6x + 8 & \text{si} & x > 4 \end{cases}$$

- (a) [1,5 puntos] Calcula los puntos de corte entre la gráfica de f y la recta y=2x-4. Esboza el recinto que delimitan la gráfica de f y la recta.
- (b) [1 punto] Calcula el área del recinto anterior.

Ejercicio 7: (2019)

Ejercicio 1.- [2,5 puntos] Considera la función f definida por

$$f(x) = \frac{a x + b}{c x + 1}$$
 para $cx + 1 \neq 0$.

Determina a, b y c sabiendo que la recta x=-1 es una asíntota vertical a la gráfica de f y que $y=2\,x+4$ es la recta tangente a la gráfica de f en el punto de abscisa x=1.

Ejercicio 8: (2019)

Ejercicio 2.- [2,5 puntos] Considera la función $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = -4x^2 + a$, siendo a > 0 un número real. Esboza el recinto limitado por la gráfica de f y la recta y = 0. Calcula a sabiendo que el área del recinto es 18.

Ejercicio 9: (2019)

Ejercicio 1.- [2,5 puntos] Dada la función $f \colon \mathbb{R} \to \mathbb{R}$ definida por $f(x) = 6 - \frac{1}{6}x^2$, calcula las dimensiones del rectángulo de área máxima, de lados paralelos a los ejes, inscrito en el recinto comprendido entre la gráfica de f y la recta g = 0.

Ejercicio 10: (2019)

Ejercicio 2.- [2,5 puntos] Determina la función $f:(0,+\infty)\to\mathbb{R}$ sabiendo que es derivable, que su función derivada cumple

$$f'(x) = \frac{\ln(x)}{\sqrt{x}}$$

(\ln denota la función logaritmo neperiano) y que la gráfica de f pasa por el punto (1,0).

Ejercicio 11: (2019)

Ejercicio 1.- [2,5 puntos] Se sabe que la función $f: \mathbb{R} \to \mathbb{R}$, dada por

$$f(x) = \left\{ \begin{array}{ll} \operatorname{sen}(x) + ax + b & \text{ si } & x \leq 0 \\ \\ \frac{\ln(x+1)}{x} & \text{ si } & x > 0 \end{array} \right.$$

(In denota la función logaritmo neperiano) es derivable. Calcula a y b.

Ejercicio 12: (2019)

Ejercicio 2.- Sea la función $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = xe^{-x^2}$.

- (a) [1,25 puntos] Calcula los puntos de corte de la gráfica de f con los ejes coordenados y los extremos relativos de f (abscisas en los que se obtienen y valores que se alcanzan).
- (b) [1,25 puntos] Determina a>0 de manera que sea $\frac{1}{4}$ el área del recinto determinado por la gráfica de f en el intervalo [0,a] y el eje de abscisas.

Ejercicio 13: (2019)

Ejercicio 1.- [2,5 puntos] Calcula
$$\lim_{x\to 0} \frac{\cos(x) - e^{-2x} - 2x}{\sin^2(x)}$$

Ejercicio 14: (2019)

Ejercicio 2.- [2,5 puntos] Calcula $\int \ln \left(\frac{x^2+1}{x} \right) dx$ (ln denota la función logaritmo neperiano).

Ejercicio 15: (2019)

Ejercicio 1.- [2,5 puntos] Se sabe que la función $f: \mathbb{R} \to \mathbb{R}$, dada por

$$f(x) = \begin{cases} x^2 - ax + 2b & \text{si} & x \le 0 \\ \frac{\ln(x+1)}{x} & \text{si} & x > 0 \end{cases}$$

(In denota la función logaritmo neperiano) es derivable. Calcula a y b.

Ejercicio <u>16</u>: (2019)

Ejercicio 2.- Sean las funciones $f,g\colon [0,\pi] \to \mathbb{R}$ definidas por $f(x) = \mathrm{sen}(x)$ y $g(x) = \mathrm{sen}(2x)$.

- (a) [1 punto] Esboza sus gráficas en unos mismos ejes coordenados y calcula sus puntos de corte.
- (b) [1,5 puntos] Calcula el área del recinto limitado por ambas gráficas y las rectas x=0 y $x=\frac{\pi}{3}$.

Ejercicio 17: (2019)

Ejercicio 1.- Se considera la función $f \colon (-2\pi, 2\pi) \to \mathbb{R}$ definida por

$$f(x) = \frac{\cos(x)}{2 + \cos(x)}$$

- (a) [1,5 puntos] Calcula sus intervalos de crecimiento y de decrecimiento.
- (b) [1 punto] Halla sus máximos y mínimos relativos (abscisas en los que se obtienen y valores que se alcanzan).

Ejercicio 18: (2019)

Ejercicio 2.- Sea f la función definida por $f(x) = \frac{x^4}{x^2 - 1}$ para $x \neq 1, -1$.

- (a) [2 puntos] Halla todas las funciones primitivas de f.
- (b) [0,5 puntos] Calcula la primitiva que pasa por (2,0).

Ejercicio 19: (2019)

Ejercicio 1.- [2,5 puntos] Se sabe que la gráfica de la función $f \colon \mathbb{R} \to \mathbb{R}$, dada por

$$f(x) = 2x^3 + ax^2 + bx + c,$$

tiene un punto de inflexión para x=1 y que la ecuación de la recta tangente a dicha gráfica en ese punto es y=-6x+6. Calcula a,b y c.

Ejercicio 20: (2019)

Ejercicio 2.- Considera las funciones $f,g\colon [-\pi,\pi]\to \mathbb{R}$ definidas por $f(x)=\cos(x)$ y $g(x)=\sin(x)$.

- (a) [1 punto] Esboza sus gráficas en unos mismos ejes coordenados y calcula sus puntos de corte.
- (b) [1,5 puntos] Calcula el área del recinto delimitado por las gráficas de f y de g en el intervalo $\left[-\frac{3\pi}{4},\frac{\pi}{4}\right]$.

Ejercicio 21: (2019)

Ejercicio 1.- Considera la función f definida por

$$f(x) = \frac{x^2 + 3x + 4}{2x + 2} \quad \text{para} \quad x \neq -1.$$

- (a) [1,5 puntos] Estudia y halla las asíntotas de la gráfica de f.
- (b) [1 punto] Determina los intervalos de crecimiento y de decrecimiento de f.

Ejercicio 22: (2019)

Ejercicio 2.- [2,5 puntos] Sea la función $f:(0,+\infty)\to\mathbb{R}$ definida por $f(x)=\frac{1+e^x}{1-e^x}$. Halla la primitiva de f cuya gráfica pasa por el punto (1,1). (Sugerencia: cambio de variable $t=e^x$).

Ejercicio 23: (2019)

Ejercicio 1.- Considera la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = (x - a)e^x$.

- (a) [1,25 puntos] Determina a sabiendo que la función tiene un punto crítico en x=0.
- (b) [1,25 puntos] Para a=1, calcula los puntos de inflexión de la gráfica de f.

Ejercicio 24: (2019)

Ejercicio 2.- Considera la funciones $f\colon (-2,+\infty)\to \mathbb{R}$, definida por $f(x)=\ln(x+2)$ (\ln denota la función logaritmo neperiano) y $g\colon \mathbb{R}\to \mathbb{R}$, definida por $g(x)=\frac{1}{2}\,(x-3)$.

- (a) [1 punto] Esboza el recinto que determinan la gráfica de f, la gráfica de g, la recta x=1 y la recta x=3. (No es necesario calcular los puntos de corte entre las dos gráficas).
- (b) [1,5 puntos] Determina el área del recinto anterior.