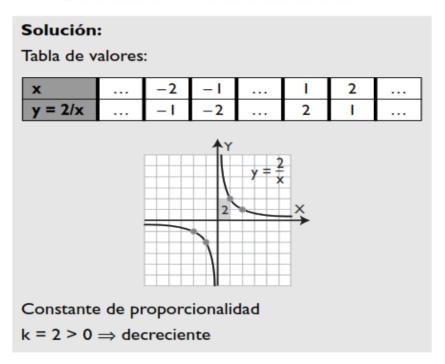
RELACIÓN 1 EJERCICIOS: FUNCIONES RACIONALES

Ejercicio 1:

1 Representa la gráfica de la función y = 2/x, calcula el valor de la constante de proporcionalidad e indica si ésta es creciente o decreciente.

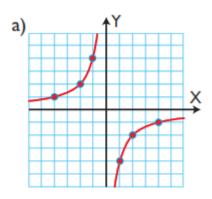


Ejercicio 2:

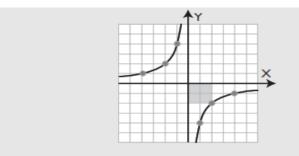
Representa la gráfica de la función y = -3/x. Calcula el valor de la constante de proporcionalidad e indica si es creciente o decreciente.

Ejercicio 3:

Halla la ecuación de las siguientes funciones:



Solución:

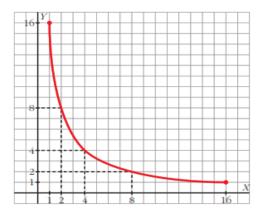


Como es creciente, \mathbf{k} es negativo.

$$y = -\frac{4}{x}$$

Ejercicio 4:

Representa:
$$y = \frac{16}{x}$$
, $1 \le x \le 16$



Ejercicio 5:

Las gráficas de la derecha (roja y verde) tienen por ecuaciones $y = \frac{a}{x}$ e $y = \sqrt{bx}$.

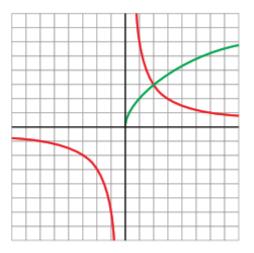
Di qué ecuación corresponde a cada gráfica y averigua los valores de a y de b.

$$y = \frac{a}{x}$$
 es la roja. $y = \sqrt{bx}$ es la verde.

Basta con fijarse en los dominios.

La roja pasa por (2, 3), luego $3 = \frac{a}{2} \rightarrow a = 6$

La verde pasa por (1, 2), luego $2 = \sqrt{b \cdot 1} \rightarrow b = 4$



Ejercicio 6: Representa las siguientes funciones del tipo $y = \frac{ax+b}{cx+d}$

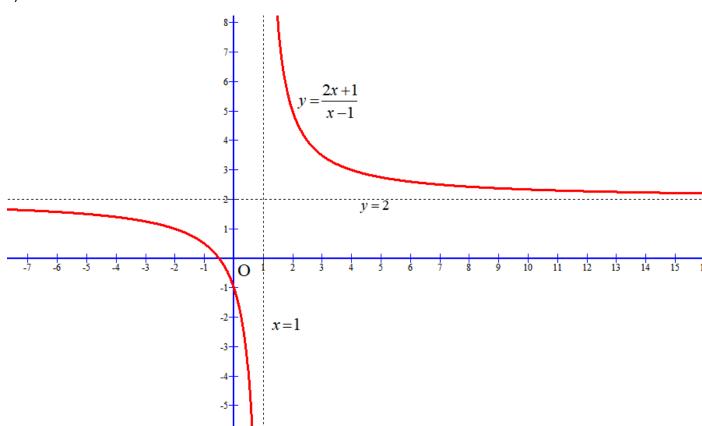
a)
$$y = \frac{2x+1}{x-1}$$

b)
$$f(x) = \frac{x+1}{3x+6}$$

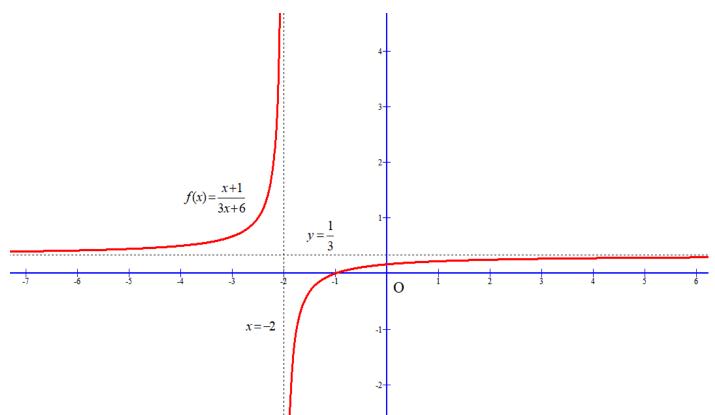
c)
$$g(x) = \frac{-x}{x-3}$$

SOLUCIÓN:

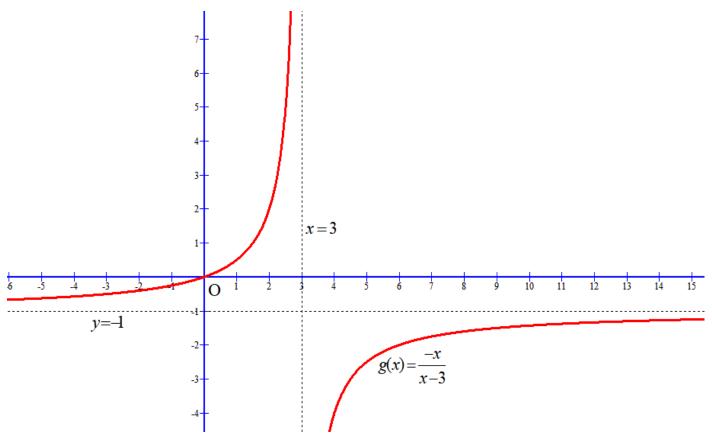
a)



b)

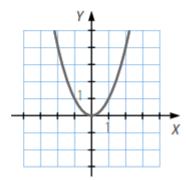


c)



Ejercicio 7:

Dada la gráfica de la función $y = x^2$:



representa estas funciones.

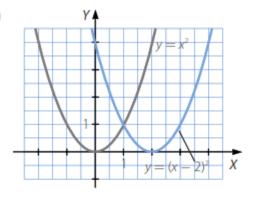
a)
$$y = (x - 2)^2$$

c)
$$y = (x + 3)^2$$

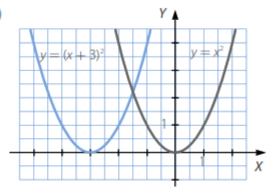
b)
$$y = x^2 + 3$$

d)
$$y = x^2 - 4$$

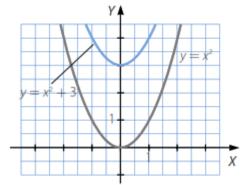
a)



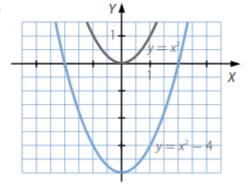
c)



b)

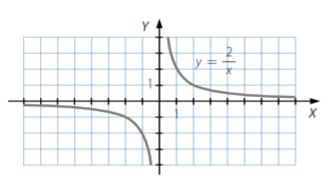


d)



Ejercicio 8:

La gráfica pertenece a la función $y = \frac{2}{x}$.



Construye a partir de ella la gráfica de las funciones.

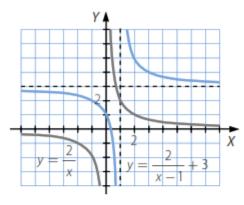
a)
$$y = \frac{2}{x-1} + 3$$

c)
$$y = \frac{2}{x+2} - 1$$

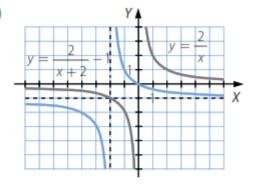
b)
$$y = 2 - \frac{2}{x - 3}$$

d)
$$y = -1 - \frac{2}{x+1}$$

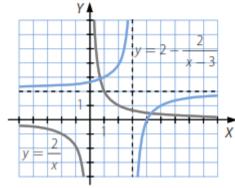
a)



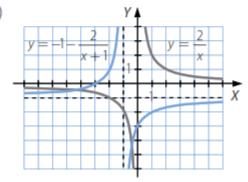
c)



b)



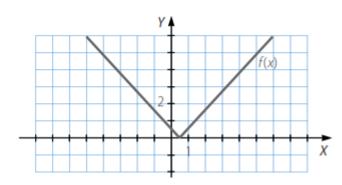
d)



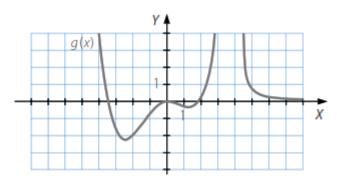
Ejercicio 9:

A partir de cada gráfica, dibuja la gráfica de las funciones que se indican.

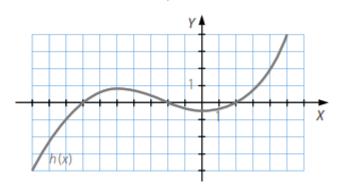
a)
$$f(-x) y - f(x)$$



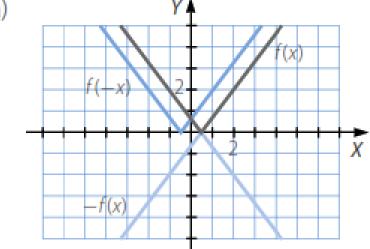
b) g(x) + 1 y g(x) - 3



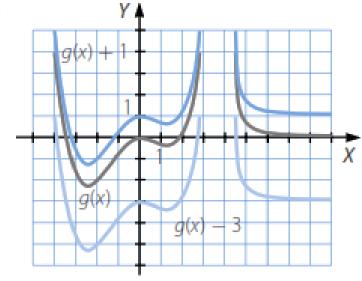
c) h(x + 1) y h(x - 2)



a)



b)



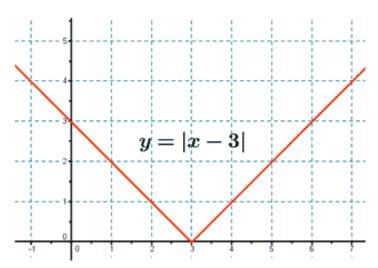
c) Y = h(x + 1)

 $\underline{\textit{Ejercicio 10}} : \textit{Representa las siguientes funciones con valor absoluto} :$

a)

$$y = |x - 3|$$

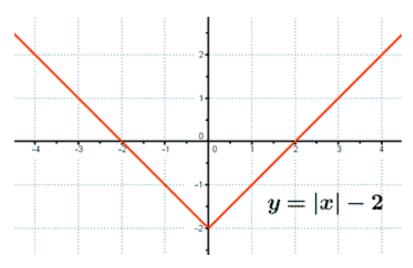
Sol.:



b)

$$y = |x| - 2$$

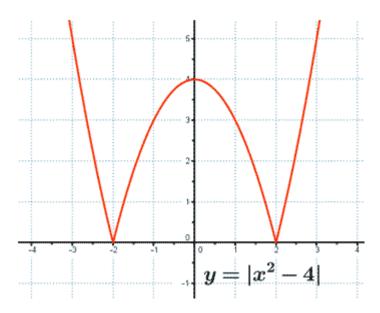
Sol.:



c)

$$y = |x^2 - 4|$$

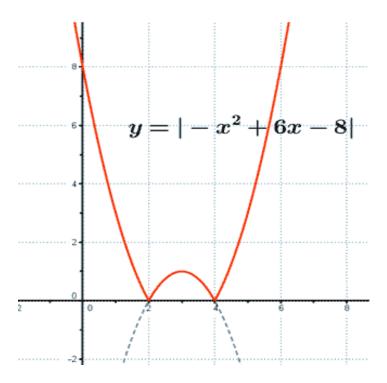
Sol.:



d)

$$y = |-x^2 + 6x - 8|$$

Sol.:



Ejercicio 11:

Representa gráficamente:

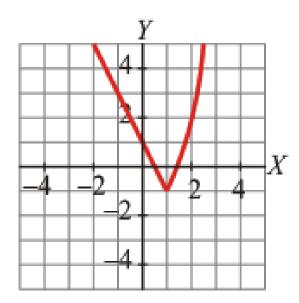
$$y = \begin{cases} -2x + 1 & \text{si} \quad x \le 1 \\ x^2 - 2 & \text{si} \quad x > 1 \end{cases}$$

Solución:

Si $x \le 1$, tenemos un trozo de recta.

Si x > 1, es un trozo de parábola.

La gráfica es:



Ejercicio 12:

Representa gráficamente la siguiente función:

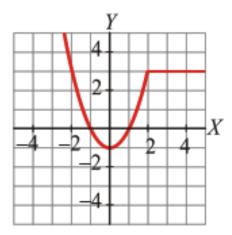
$$y = \begin{cases} x^2 - 1 & \text{si} \quad x \le 2 \\ 3 & \text{si} \quad x > 2 \end{cases}$$

Solución:

Si $x \le 2$, es un trozo de parábola.

Si x > 2, es un trozo de recta horizontal.

La gráfica es:



Ejercicio 13:

Representa la siguiente función definida a trozos. Estudia también la continuidad, el crecimiento, decrecimiento y los máximos y mínimos de cada una de ellas.

$$f(x) = \begin{cases} x - 3, -\infty < x \le 0 \\ 2, 0 < x < 3 \\ -x, 3 \le x < \infty \end{cases}$$

Solución:

El domino de f(x) tiene tres zonas, para una de las cuales corresponde un trazado distinto:

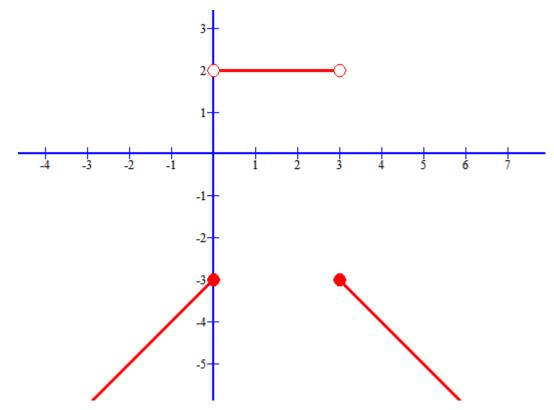
• Para la primera zona, $-\infty < x \le 0$, construimos una tabla de valores con el fin de obtener dos puntos. No necesitamos más puntos, ya que en el presente tramo la función es una línea recta, $f_1(x) = x - 3$

$$\begin{array}{c|cc} x & x-3 \\ \hline 0 & 0-3=-3 & \Rightarrow A(0,-3) \\ -2 & -2-3=-5 & \Rightarrow B(-2,-5) \end{array}$$

- Para la segunda zona, 0 < x < 3, el valor de la función es constante, $f_2\left(x\right) = 2$
- Para la tercera zona, $3 \le x < \infty$, construimos una tabla de valores con el fin de obtener dos puntos. No necesitamos más puntos ya que este tercer tramo se trata de otra recta, $f_3(x) = -x$

$$\begin{array}{c|cc}
x & -x \\
\hline
3 & -3 & \Rightarrow D(3,-3) \\
5 & -5 & \Rightarrow E(5,-5)
\end{array}$$

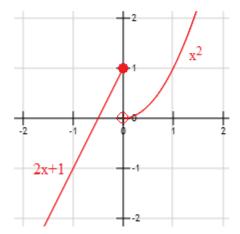
Nos queda



Ejercicio 14:

$$f(x) = \left\{egin{array}{ll} 2x+1 & & ext{si } x \leq 0 \ x^2 & & ext{si } x > 0 \end{array}
ight.$$

En esta función, si la variable toma un valor menor o igual que 0, la definición de la función es 2x+1, mientras que si toma un valor positivo la definición de la función es x^2 .

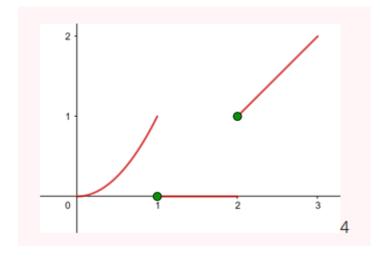


El punto sólido y el punto vacío de la gráfica indican que el valor que toma f en x=0 es f(0)=1 y no f(0)=0 (porque x=0 pertenece al primer intervalo de la definición de f).

Ejercicio 15:

$$f(x) = \begin{cases} x^2 & si & 0 < x < 1\\ 0 & si & 1 \le x < 2\\ x - 1 & si & 2 \le x < 3 \end{cases}$$

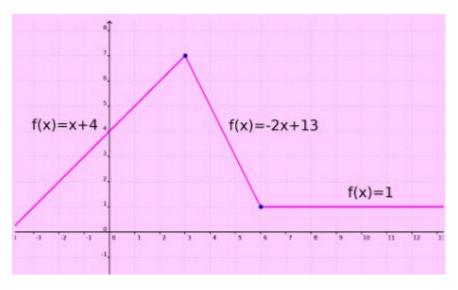
Sol.:



Ejercicio 16:

$$f(x) = \begin{cases} x + 4 & \text{si } x \le 3 \\ -2x + 13 & \text{si } 3 < x < 6 \\ 1 & \text{si } x \ge 6 \end{cases}$$

Sol.:



Ejercicio 17:

